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1 INTRODUCTION

1 Introduction
The tightening of climate policies may cause technologies related to fossil fuel use to lose
value compared to “green” technologies. (Future) climate policy then entails a “technolog-
ical risk” for firms whose business model relies on fossil-based knowledge. This risk trans-
lates into a risk for investors. According to a recent survey, 75% of institutional investors –
i.e. organizations that invest on behalf of their members or clients – consider technological
risk to be a financial risk already today or within the next five years (Krueger et al. 2020).
With large and increasing shares of worldwide equity under management, institutional in-
vestors will have an important role to play in the transition to a green economy. Due to
their size, they can use voting power and direct conversations with management to affect
firm-level outcomes. Building on evidence that institutional investors have an impact on
firm-level innovation (Aghion et al. 2013) as well as environmental, social and governance
(ESG) scores (Dyck et al. 2019; Dimson et al. 2015) and CO2 emissions (Azar et al. 2020),
this paper aims to find out whether institutional investors mitigate technological risk by
influencing the direction of innovation in firms.

Institutional investors are playing an increasingly large role in financial markets, holding on
average 40% of the equity of the firms in this paper’s sample. More importantly still, a large
number of institutional investors have voiced concern about climate risk. Typically, climate
risk is understood as an aggregate of two types of risk: physical risk from climate change
itself (see, e.g., Dietz et al. 2016), and transition risk (sometimes also called regulatory risk)
due to stricter climate policies affecting asset values (McGlade and Ekins 2015; Battiston
et al. 2017; Batten et al. 2016). Institutional investors are reported to be particularly
concerned about transition risk, and many institutional investors have signed initiatives
such as the “United Nations Principles for Responsible Investment” (UN PRI) or “Climate
Action 100+”, committing to (climate) responsible investment. This paper focuses on a
particular case of transition risk: the risk that technologies related to fossil fuel use lose
value due to climate policies. Car manufacturers, for instance, will meet climate policy
goals less by reducing own emissions, but by changing the type of technology they sell.

The financial sector has traditionally not been equipped for dealing with uncertainties due
to climate change or climate policy: models for risk management in portfolios are based
on past, quantifiable risks and are not designed to reflect future uncertainties (Battiston
et al. 2019; Silver 2016).1 Using data for 2015, Battiston et al. (2017) have shown how
institutional investors are still exposed to firms and sectors which face a high transition
risk. They also demonstrate how the financial system, due to second-round effects from
indirect holdings adding to the first-round effects, would get under stress in case of a strict
climate policy scenario. This appears to reflect a very limited success of initiatives for
sustainable investment.

1Risk and uncertainties in the context of climate change damages as well as climate policy are discussed
in the literature on climate and energy economics, see e.g. Crost and Traeger (2014), Rudik (2020), Sinn
(2008), Fried et al. (2020), Wesseler and Zhao (2019), Pommeret and Schubert (2018), Barradale (2014),
Yang et al. (2008), Torani et al. (2016), and IEA (2007).
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1 INTRODUCTION

However, institutional investors can choose different strategies to act (climate) responsi-
bly, of which portfolio adjustment plays a minor role. In a survey among international
institutional investors on climate risk, 84% of respondents reported that they had taken
climate-related engagement actions in the last five years – compared to 29% attempting
to reduce carbon footprints through portfolio shifts (Krueger et al. 2020). Engagement
can take various forms: the most visible channel is proxy voting in shareholder meetings.
Analysts have noted that institutional investors are increasingly voting in favor of climate-
related shareholder proposals, although there is quite some heterogeneity between them
(Berridge and Nurjadin 2020). However, less visible channels also play a role: engagement
can take place “via letters, emails, telephone conversations, and direct conversations with
senior management” (Dimson et al. 2015). The actual influence of institutional investors
can work via different mechanisms. They can use public pressure, threaten to divest, vote
against proposals in shareholder meetings, or vote against re-election of managers. In a
more positive sense, they can also back managers who initiate changes which only pay
back later. With success measured by changes implemented after the engagement activ-
ities, such activities in the field of ESG themes have been shown to be effective and to
create positive stock market reactions (Dimson et al. 2015; Dyck et al. 2019; Nguyen et al.
2020).

The relationship between the investor and the firm is that between a principal and an agent.
In equity markets, agency problems between managers and shareholders have traditionally
been a concern due to the disperson of ownership. The increasing number and size of
institutional investors have changed this relationship (Bebchuk et al. 2017). In the case of
climate transition risk, it is not a priori clear whether the principal or the agent should
have a stronger incentive to become active. Essentially, it can be seen as a question of
the time horizon (and the ability to deal with uncertainty) of managers vs. investors.
The available literature suggests that managers of listed firms tend to be driven by short-
term performance goals; institutional owners can back them with a long-term commitment,
allowing to take risks in the short term for a more profitable future (Dimson et al. 2015;
Aghion et al. 2013; Bushee 1998). This is relevant in the context of R&D and technological
change.

This paper uses firm-level panel data to test for the influence of institutional ownership on
the direction of innovation. The main data source is the Orbis database. It includes yearly
information on the shares of each owner in total market capitalization and distinguishes
between different investor types. This allows to calculate the share of total institutional
ownership per firm and year, or shares of different investor types. For instance, signatories
of the UN PRI or investors with a long time horizon (e.g. pension funds) would be expected
to have a larger interest in future climate risks than the average institutional investor.
Further firm-year specific control variables are also sourced from Orbis, as well as other
data suppliers.

Data on patents comes from the Orbis Intellectual Property (Orbis IP) database and can
be directly linked to firms. This paper classifies patents into green and fossil categories,
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1 INTRODUCTION

based on their technological classification codes, applying a modified classification based
on Dechezleprêtre et al. (2017). It then separately looks at the influence of institutional
ownership on green and fossil patenting to draw conclusions on investors’ preferences re-
garding the direction of innovation. Patents are a useful measure when discussing the
(potentially) long-term horizon of institutional investors: they are the result of lengthy
R&D efforts which bear fruit in the future. When successful, they grant the exclusive right
to use an invention (in the jurisdiction of the patent office). Information on patents is
publicly available. In particular, typical investor newsfeeds include information on patent
applications and grants.2 Moreover, institutional ownership has been shown to increase
patenting activities (Aghion et al. 2013).

Studying green and fossil patents as an outcome variable of owners’ engagement offers
the advantage of being more clearly about climate issues than aggregate ESG scores.3
Moreover, patents are rarely discussed in the broader media. This makes them an ideal
measure to study institutional investors’ motives beyond reputational issues, which are
often the underlying concern behind ESG “risks”. At the same time, the use of patents
allows for more middle ground than approaches that divide firms into “clean” and “dirty”
ones. Based on their innovation activities, companies can be green and fossil at the same
time; they can also gradually shift their activities over time. This kind of gradual pattern
fits with those institutional investors that use engagement rather than divestment.

To account for the count property of patent data and the path dependency of innovation,
I use a dynamic count data model in the spirit of Aghion et al. (2016), where patenting
depends on previous knowledge, knowledge spillovers, and R&D efforts. The share of
institutional ownership is added as an additional explanatory variable. The model includes
firm fixed effects using the pre-sample mean method (Blundell et al. 1999). To control for
patent quality, I focus on patents filed at one of the main patenting offices (EU, US, Japan)
which are ultimately granted. To account for potential bias through endogenous selection
of investors, I apply a control function approach. A firm’s institutional ownership share is
instrumented by the inclusion of the firm in a large stock index.

Tracking more than 1,200 firms worldwide over the years 2009-2018, I find no evidence for
investors’ engagement for directed innovation. Overall, the number of patent applications
increases with more institutional ownership. However, when looking at patents classified
as green or fossil, no effect can be detected. This is true for more disaggregate measures
of innovation (such as green/fossil transport and energy, respectively) and for more dis-
aggregate types of investors (e.g. signatories of the UN PRI or pension funds). There is
a positive association between climate-related opportunities mentioned in investor confer-
ence calls and subsequent green patenting; it is difficult, however, to ascertain that this

2Kogan et al. (2017) have recently used the attention of financial markets to patent grant events to
derive a measure for patent values.

3Berg et al. (2019) show how the different methodologies of measuring and combining different issues
in ESG scores by different providers leads to very heterogeneous scores within the same firm, giving rise
to “aggregate confusion”.
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1 INTRODUCTION

effect is causal. If institutional investors try to influence firms to become less susceptible
to climate risk, then these efforts are not (yet) detectable in the innovation activities of
firms.

Related literature This paper contributes to the literature on institutional investors
and environmental concerns. Dyck et al. (2019) and Gibson and Krueger (2017) find
that institutional investors improve firms’ environmental and social performance; they do
not look at climate policy risk specifically, though. Azar et al. (2020) show that firms
tend to reduce their carbon emissions when the ownership share of the “Big Three” index
funds (BlackRock, Vanguard, State Street) increases, consistent with data on these firms’
engagement activities. Krueger et al. (2020) report survey results showing that institutional
investors are concerned with climate risk, in particular regulatory risk; and that one of their
preferred modes of action is engagement. Sautner et al. (2020b) use transcripts of investor
conference calls to develop a measure for firm-level exposure to climate risk, thus making
use of statements by managers as well as investors’ concerns. The paper at hand tests
whether these stated concerns and actions yield results in the technological sphere, using
innovation activities as revealed engagement outcomes. In this context, the paper draws
on previous work on institutional investors and innovation (Aghion et al. 2013; Borochin
et al. 2020; Jiang and Yuan 2018; Rong et al. 2017; Bushee 1998). It is also related to the
literature on ownership structure and financing innovation (Bernstein 2015; Chemmanur
et al. 2014; Atanassov 2013; Lerner et al. 2011; Kerr and Nanda 2015; Hall and Lerner
2010; Munari et al. 2010).4

It also connects with the literature on environmental policy and green innovation. The-
oretical work on climate policy and green innovation is mostly concerned with positive
spillovers from green innovation, path dependencies, and their interaction with climate
policies (Acemoglu et al. 2012; Fried 2018; Bretschger and Schaefer 2017; Di Maria and
Smulders 2017; Lambertini et al. 2017). Empirical studies confirm the relevance of knowl-
edge spillovers in the context of clean technologies (Dechezleprêtre et al. 2017; Verdolini
and Bosetti 2017; Verdolini and Galeotti 2011; Lanzi et al. 2011) and for overall inno-
vation (Peri 2005), with heterogeneity between sectors. Although path dependencies and
spillovers are not the main focus of this paper, these considerations have inspired the path-
dependency model used in this paper’s empirical estimations. In the empirical literature on
policy impacts, several studies find a positive effect of climate policies on green innovation
(Kiso 2019; Calel and Dechezleprêtre 2016; Aghion et al. 2016; Nesta et al. 2014). This
paper is methodologically closely related to Aghion et al. (2016). It is the first to link the
direction of innovation to institutional investors’ engagement activities.

4There is also a literature on “overlapping ownership” (also cross-ownership or common ownership),
referring to the fact that the same institutional investors tend to own shares in all or most of an industry’s
competitors. Overlapping ownership may affect competition (Vives 2020; He and Huang 2017; Borochin
et al. 2020), also via R&D spillovers (López and Vives 2019). This effect, or the generally established link
between innovation and competition (Aghion et al. 2005; Dasgupta and Stiglitz 1980), is not the focus of
this paper.
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The paper further contributes to the field of climate transition risk and financial markets.
Central banks and other financial institutions have voiced concerns that these risks may
not be adequately priced in yet in financial markets. Following an unexpected tightening
of policies or sudden changes in expectations, the re-pricing might occur suddenly and
with implications for financial stability (van der Ploeg and Rezai 2020; Monasterolo 2020;
Batten et al. 2016; European Systemic Risk Board 2016). There is some empirical evidence
that stock market investors are aware of these risks and price them in when they receive
new information about regulation (Sen and von Schickfus 2020; Carattini and Sen 2019;
Griffin et al. 2015; Ramiah et al. 2013). Especially the election of Donald Trump and
the conclusion of the Paris Agreement have been used as events which changed policy
expectations (Kruse, Mohnen, and Sato 2020; Monasterolo and de Angelis 2020; Ramelli
et al. 2019; Mukanjari and Sterner 2018).

However, the mentioned event studies focus on immediate stock market reactions, excluding
the engagement channel; moreover, firms are mostly selected as being “fossil” or not, leaving
no ground for gradual change within firms. A notable exception is Kruse, Mohnen, Pope,
et al. (2020), who use data on firms’ green revenues and find that firms providing more
environmental goods and services have, on average, a higher market valuation (measured
by Tobin’s q). Other strands of literature look at regulatory risk and the pricing of bank
loans and corporate bonds (Seltzer et al. 2020; Delis et al. 2019), and at the exposure of
interconnected financial markets to climate risk (Battiston et al. 2017). This paper is the
first to examine technological transition risk, and to focus on institutional investors.

The remainder of the paper is organized as follows: Section 2 provides some background
on patents and patent data characteristics. The methodological approach is presented in
section 3, and section 4 describes the data sources and the construction of the dataset.
Section 5 presents and discusses the results. Section 6 concludes.

2 Patents: background and classification
This section describes relevant patent data characteristics and how to classify patents by
technology. Section 4 gives details on the data sources and provides summary statistics.
Patents protect intellectual property rights: Individuals and firms apply for patenting in
order to receive the exclusive right to use their invention. An example of a patent (its first
page) can be found in Figure 1 in Appendix A.1. Patent applications are examined by
patent office examiners, whose task is to ensure that only novel innovations are protected.
Patents are often applied for at several patent offices to ensure protection in the relevant
markets. All patent applications with the same content at different offices are referred to
as one “patent family”. Patents also cite other patents, i.e. previous knowledge; they are
themselves cited by other patents (forward citations).

Applications, examinations and generating citations all takes time. Table 1 shows the
development of numbers for different patent measures in this paper’s sample over time.
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2 PATENTS: BACKGROUND AND CLASSIFICATION

Due to the nature of the patenting process, the number of patent applications in the data
appears to decrease in recent years (see the column “Patents”): the closer we are to today,
the fewer patent applications have actually been published and are available in the data -
although it is very likely that applications have been filed.5

Table 1 – Mean number of patents, family size and citations over time

Year Patents Family size Citations
2010 109.68 399.60 281.11
2011 109.02 389.46 273.82
2012 119.81 413.71 273.22
2013 116.61 390.00 197.16
2014 106.75 345.31 148.77
2015 107.25 320.00 124.30
2016 75.05 205.93 77.61
2017 51.10 120.74 28.39
2018 24.28 49.24 4.45
Average 89.93 287.35 150.85

Notes: Numbers are shown for patents (all technology types) applied for in the given
year. Patent numbers are based on a sample of publicly listed firms which filed at
least one patent classified as green or fossil in the sample period. Due to the lagged
structure of the estimation, the sample period for patents is 2010-2018.

Like previous work on green innovation, this paper exploits the fact that examiners classify
patents by technological field. There are two main classification schemes: The International
Patent Classification (IPC) and the Cooperative Patent Classification (CPC). The latter
is the result of efforts of the European Patent Office (EPO) and the US Patent Office
(USPTO) to harmonize their systems. Each patent is usually assigned several technology
classes. Within the CPC, a special Y category has been introduced to mark climate-friendly
innovations. This is helpful, but not sufficient, to identify in particular fossil-based patents.

To classify patents as green and fossil, I use a slightly modified version of the classification
by Dechezleprêtre et al. (2017) into clean and dirty patents.6 Examples for fossil transport
categories are F02F, Cylinders, pistons, or casing for combustion engines; arrangements of
sealings in combustion engines, or F02N, Starting of combustion engines. Green transport
includes, for instance, B60K 1, Arrangement or mounting of electrical propulsion units, or
B60L 8, Electric propulsion with power supply from force of nature, e.g. sun, wind. For
energy, corresponding categories would be Y02E 10 (Energy generation through renewable

5Table 13 shows the development of the counts over time separately for patents classified as green and
fossil.

6I am using the term fossil instead of dirty due to the focus on climate change and climate risk: CO2,
the result of burning fossil fuels, is not a pollutant, but a greenhouse gas. Climate risk affects fossil-based
technologies, but does not affect all “dirty” technologies with any environmental externalities. In the same
vein, not all technologies replacing fossil fuels are automatically “clean” (biomass-fired power plants, for
instance, do contribute to air pollution). The term green is therefore used to describe technologies which
replace fossil-based technologies.
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2 PATENTS: BACKGROUND AND CLASSIFICATION

energy sources) and F23 (Combustion apparatus; combustion processes).

In reality, it is sometimes hard to identify climate-friendly innovation. For instance, there
are inventions that make the use of fossil fuels more efficient and reduce emissions (Lanzi
et al. 2011). Following Dechezleprêtre et al. (2017), I introduce a third category (in ro-
bustness checks): grey patents. Most of these technologies make combustion (in engines or
power plants) more efficient, and they are thus a subset of the fossil technologies. In the
case of energy, the grey category also includes the production of fuels of non-fossil origin,
e.g. biofuels. However, all of these technologies have only limited potential to address tech-
nological risk, which is mainly about the phase-out of fossil-based technologies. Improving
existing technologies at the margin may be successful in the short and medium run, but
does not help on the way to new, carbon-free systems. An overview of the classifications
for transport and energy-related patents can be found in Tables 9 and 10 in Appendix A.1.

The literature agrees that plain patent counts are a very imprecise measure, since patent
quality (or value) is highly skewed (see Aghion et al. 2013, for example). It is therefore
important to account for patent quality. As a first step, I filter patents based on the offices
where they were filed. Only patents applied for at the US, EU, or Japanese patent office
are considered. In a second step, patents were filtered to only include granted patents.

In robustness checks, family size and citations are used instead of patent counts. Family
size measures the number of patent offices where the patent has been applied for: it is
a measure for the importance the inventor attaches herself to the patent. If the inventor
considers the invention to be of high value, she will opt to protect (and use) it in many
jurisdictions. Protection at several offices incurs direct and administrative costs, so we can
assume that it is a conscious decision of the inventing firm to increase a patent’s family
size. Citations, on the other hand, are a measure for the relevance that others attach to
the patent: if the invention is cited by other patents, it is sufficiently novel and relevant to
spur further innovation. Citations can be regarded as a measure for the scientific value of
a patent; family size is closer to the commercial value of the patent.

The censoring issue discussed above is also relevant for the choice of patent measure.
As Table 1 shows, the downward trend over time is particularly pronounced for citation
counts. This is not surprising: citations accumulate over time, and patents applied for in
2018 did not have much time to collect citations. It is generally possible to take care of
this issue by using year fixed effects. With count data, however, the amount of zeroes can
become quite large towards the end of the sample, impeding estimations. Family size also
decreases faster over time than plain patent counts - the process of applying for protection
at different patent offices takes time as well, and this lag may differ between technologies
and sectors. For this reason, the standard patent measure used in this paper is the patent
count. Family size and citations are included as a robustness check.
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3 EMPIRICAL APPROACH

3 Empirical approach

3.1 Path dependency model
The question of this paper is: do institutional investors influence green and/or fossil patent-
ing, and if yes, in a different way? I therefore test for the impact of the ownership share of
institutional investors on green and fossil patenting. The idea for the econometric specifica-
tion is inspired by the dynamic path-dependency model by Aghion et al. (2016). In such a
model, the amount of patenting depends on the firm’s own stock of patents; on innovation
spillovers from other firms in the country; and on R&D investments. Since most of the
path-dependent explanatory variables can be derived for green and fossil patent classifi-
cations, the model can be used to separately assess the impact of institutional ownership
on green and fossil patenting. In the following, the subscripts G and F are used to refer
to green and fossil patents, respectively. For the exposition, green patents are used as the
default example for the dependent variable.7

Following the literature standard, a Poisson specification is used to account for the count
nature of the dependent variable. The model including institutional ownership reads

PATG,it = exp(αG + βG,IOIOit−1 + βG,1 lnKG,it−1 + βG,2 lnKF,it−1

+ βG,3 lnSPILLG,it−1 + βG,4 lnSPILLF,it−1 (1)
+ βG,5R&Dit−1 + τG,t + ηG,i + εG,it),

where

• PATG,it is the count of green patents applied for by firm i in year t;

• IOit is the percentage of institutional ownership in firm i in year t− 1;

• KG,it−1 is the firm’s pre-period green patent stock;

• KF,it−1 is the firm’s pre-period fossil patent stock;

• SPILLG,it−1 are country-level green spillovers to firm i in period t− 1;

• SPILLF,it−1 are country-level fossil spillovers to firm i in period t− 1;

• R&Dit−1 are R&D expenditures of firm i in year t− 1;

• τG,t is a year fixed effect;

• ηG,i is a firm fixed effect; and

• εG,it is an error term.

Institutional ownership is a continuous variable reflecting the relative quantity of institu-
tional ownership compared to other owners. The literature on institutional owners suggests

7Further categories are possible, such as green transport patents, grey patents, or total patents; these
are introduced later in the text.
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that this quantity makes a qualitative difference: (Many) large investors have more (joint)
influence in proxy votes, conference calls, etc.

Essentially, the idea of Equation 1 is to single out the influence of institutional ownership
while controlling for already existing knowledge stocks (due to own patenting and spillovers)
and the inherent path dependency. Previous own knowledge on green technologies, KG,it−1
can explain further innovative activities in this direction. SPILLG,it−1 are country-level
green innovation spillovers, based on the assumption that an environment of domestic
firms with knowledge on green technologies is conducive to each firm’s innovation in this
direction. Following Aghion et al. (2016), previous knowledge on fossil technologies and
fossil spillovers are also included (KF,it−1, SPILLF,it−1). This specification is derived from
the observation that many firms with a track record in fossil innovation become active
in green innovation: the technologies are used to serve similar markets, e.g. in the car
industry. The construction of knowledge stocks and spillovers is discussed in detail in
section 4.

However, patents of course are not generated simply out of previously existing patents.
Research and Development is a further obvious part of the firm’s production function
of patents (see also Hall et al. 2005). The inclusion of R&D is particularly useful in
the context of this paper’s research question. R&D expenditure controls for the overall
R&D efforts, so any change in green or fossil patents we observe can be more clearly
interpreted as a directional change, as opposed to a pure increase.8 In addition, investors
may observe R&D efforts and select into firms with higher R&D expenditures, expecting
larger innovation output; this would cause an omitted variable bias and an overestimation
of investors’ influence.

In robustness checks, two more control variables are used: Tobin’s q and firm-specific
climate exposure (see section 3.5 for details). One might think of other firm-specific vari-
ables that are associated with innovation, like financing constraints or firm size. Including
measures for tangibility, leverage, operating revenue, capital-labor ratio, or profits did not
significantly alter the outcome, so the corresponding results are not included in this paper.

3.2 Firm fixed effects
Equations 1 and 3 include firm-level fixed effects: Unobserved heterogeneity between firms
needs to be controlled for. In Poisson estimations, the standard approach is to use the

8Contrary to e.g. Aghion et al. (2013) and Hall et al. (2005), this paper uses yearly R&D spendings
instead of R&D stocks. There are two main reasons for this choice. First, the specification in equation 1
already accounts for knowledge stocks, measured by patents. The additional value of the R&D variable
(which does not appear in the, otherwise very similar, specification of Aghion et al. 2016) lies in capturing
additional innovation efforts which are on top of, and separate from, existing knowledge stocks. The
second reason is a data concern. Many firms in the sample have incomplete R&D time series, making the
construction of R&D stocks difficult and error-prone. Sticking with yearly expenditures - and excluding
missing firm-years from the analysis - is thus the safer variant. Test regressions (not shown) were run
using R&D stocks, without significantly affecting results.
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conditional fixed effects estimator proposed by Hausman et al. (1984). Put simply, it con-
ditions on the sample average of the observable variables. The conditional fixed effects
estimator requires strict exogeneity of the explanatory variables. This assumption is vio-
lated in a dynamic panel data model such as Equation 1, which exhibits serial correlation
between innovation stock measures.

Therefore, an alternative approach to modelling firm fixed effects is used: the pre-sample
mean estimator proposed by Blundell et al. (1999) (BGVR), which has been used in the
environmental context e.g. in Nesta et al. (2014). The idea is to condition on the pre-sample
mean of the dependent variable to proxy out the fixed effect. This approach is particularly
well suited to patent data, because patent data is typically available in pre-sample years.
Blundell et al. (2002) show that this estimator leads to some bias, but increasing the
number of pre-sample periods (and, to a lesser extent, the number of in-sample periods
and the number of observation units) improves performance. The pre-sample mean enters
the estimation in logged form.

For the research question at hand, the choice of pre-sample periods means dealing with a
trade-off: more pre-sample information is generally desirable, but green technologies are a
relatively “young” phenomenon. Pre-sample averages of green patenting going back a long
time may not be useful to reflect current firm characteristics regarding green innovation.9
In this analysis, the pre-sample average for the years 1995-2008 is used. This is a reasonable
amount of years and at the same time, years with measurable patenting activity in both
green and fossil areas are covered.10

3.3 Selection issues and control function
One concern when estimating Equation 1 is the selection of investors into firms. The
coefficient on institutional ownership share may be biased if investors select into firms
with more expected green (or more fossil) innovation. Most investors use a combination
of strategies to deal with climate risk; so it is possible that some investors select the most
promising green-innovation firms, others try to encourage green innovation, and others do
both.

I therefore use a source of exogenous variation in institutional ownership: The inclusion of
a firm in a large stock index. It has been widely used as an instrument for institutional
ownership (Aghion et al. 2013; Crane et al. 2016; Appel et al. 2016). The idea is that many
institutional investors either directly track such indices, or their managers are benchmarked
against them. Therefore the instrument is expected to be correlated with institutional
ownership. For it to fulfill the exclusion restriction, I need to rule out a relationship

9Aghion et al. (2016), who have a sample covering the years 1986 to 2005, argue against the use of
the BGVR method for this reason: green patenting in the early 1980s was not a good indicator for green
patenting in the early 2000s.

10In a robustness check (not shown), the average for the years 2000-2008 was used, since the data show
higher green patenting activity after 2000. The estimation results are virtually the same.
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between pre-period index membership on this year’s (green / fossil / total) patenting,
controlling for observables. It is therefore helpful to understand the selection of index
members.

Index membership is decided on by Index Committees; none of their criteria explicitly
mention innovation. One of the main criteria for inclusion in a large stock index is market
capitalization. Also, firms need to fulfil basic eligibility criteria to be added to an index,
such as certain thresholds for free-float market capitalization and earnings in the quarters
prior to index admission. There may be a concern that a firm’s market value increases in
expectation of future patenting, and this leads to admission to the index. All estimations
control for R&D expenditures and thus for the observable part of innovation activities
that may result in patents. I also show in Table 20 that Tobin’s q, a measure for above-
fundamental market valuation, is not a significant predictor of innovation. In the first-stage
regressions, the coefficient of Tobin’s q is insignificant as well, implying that this measure of
market valuation does not affect institutional ownership, controlling for other observables.
It has also been shown that markets price in most of the value of patents at a later stage:
when a patent is granted (Kogan et al. 2017).11

Moreover, Index Committees do not simply decide based on fixed criteria. For instance, it
is the explicit goal of the S&P 500 Index to be representative of the US economy in terms
of sector coverage. Also, if a current index member does not fulfil the eligibility criteria
any more, this does not automatically lead to exclusion. Index managers are interested
in a stable composition of the index. This discretion provides another source of variation
that is not related to other firm variables.

I define the instrument indexmemberit as a dummy equal to one if a firm was a member
of the S&P 500, the STOXX Europe 600 and/or the S&P Global 1200 index in year t.
These indices cover a wide range of countries, while still being exclusive enough to have
explanatory power. Given the nonlinear model, the instrument enters the estimation in
a control function approach (Wooldridge 2010). In the first stage (OLS), institutional
ownership is regressed on the instrument and all control variables of the second stage.
The residuals from this estimation - i.e., the part of institutional investors’ ownership that
cannot be explained by the instrument - are then included as a control variable in the
second-stage regression. As a result, the coefficient on IOit reflects the effect of the part
of institutional ownership that is due to the index membership of the firm.

11Considering the eligibility criteria, the relationship between high free-float (with, e.g., low family or
management ownership) and innovation is not a priori clear, and the evidence on family or management
ownership and innovation is mixed (Munari et al. 2010; Schmid et al. 2014; Beyer et al. 2012; Ortega-
Argilés et al. 2005). Looking at earnings, it is difficult to think of a reason why higher earnings would be
followed by patent filings, given that the required R&D expenditures reduce earnings.
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3.4 Heterogeneity of sectors and institutional owners
The measurement of green and fossil patents is noisy. Some of the noise can be addressed
by differentiating between sectors. The transport and the energy sector are quite different,
and it is well possible that innovation and patents play a different role in the two sectors.
For capital-heavy energy firms, their fossil fuel reserves or power generating infrastructure
are important assets which are directly affected by climate policy, whereas intangible assets
such as patents are likely to play a smaller role. In the transport industry, by contrast,
knowledge and innovation are relatively more important.

In separate regressions, Equation 1 is modified accordingly to reflect green/fossil transport
and energy patents separately. The estimated equation for green transport patents, denoted
by GT , thus reads

PATGT,it = exp(αGT + βGT,IOIOit−1 + βGT,1 lnKGT,it−1 + βGT,2 lnKF T,it−1

+ βGT,3 lnSPILLGT,it−1 + βGT,4 lnSPILLF T,it−1 (2)
+ βGT,3R&Dit−1 + τGT,t + ηGT,i + εGT,it).

Models for fossil transport and green/fossil energy patents can be derived analogously.

Similarly, there is noise in the measurement of institutional ownership: there are many
different types of institutional investors, and they may have quite different investment/
engagement strategies, time horizons, or environmental concerns. One way to deal with
the noise is to look at these different types specifically. The literature on institutional own-
ers’ engagement suggests some time-invariant types which are expected to have long-term
investment strategies (Hsu and Liang 2017; Borochin et al. 2020). Insurance companies
and pension funds are prime examples. Government ownership is also typically long-term
and stable; state-owned enterprises have been shown to perform better environmentally.
Moreover, domestic investors (sharing the portfolio firm’s headquarter country) may have
better opportunities to engage.

In the context of sustainable finance, it is also possible to exploit a time-varying investor
type, namely signatories of the UN Principles for Responsible Investment (UN PRI) initia-
tive (see also Dyck et al. 2019). Principle 2, for instance, reads: “We will be active owners
and incorporate ESG issues into our ownership policies and practices.”12 The UN PRI
sees itself as “the world’s leading proponent of responsible investment”. The initiative was
launched in 2006 and currently has more than 3,000 signatories. With their membership,
investors declare their willingness to implement the six principles.

In the literature on institutional investors, the role of engagement has been very promi-
nently discussed in the context of the big passive index funds. Instead of actively managing
funds, these hold relatively fixed positions as they are mirroring certain stock indices. This
means they cannot easily sell their positions, and some argue that this limits their share-
holder power. On the other hand, they have an incentive to use engagement, since this is

12Stated on the PRI website, see https://www.unpri.org/pri.
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the only way they can manage risk. A growing literature shows how the big indexers use
their voting power in director (re-)elections and other governance choices (Fichtner et al.
2017; Appel et al. 2016), support activists (Appel et al. 2018), and have an influence on
firms’ emission reductions. In this light, direct engagement activities with management
seem to be a successful strategy even, or particularly, for big “passive” investors. There-
fore, the “Big Three” index fund investment companies (BlackRock, Vanguard, and State
Street) are defined as another investor type.

To account for investor type heterogeneity, the variable IO from Equation 1 can be replaced
by specific sub-groups of institutional owners: government (GOV ), insurance and pension
funds (INP ), domestic owners (DOM), signatories of the UN Principles for Responsible
Investment (UN PRI) initiative (PRI), and “Big Three” investment companies (BIG3).13

3.5 Informational value of nonsignificant results
As will be shown in detail in section 5 on Results, I do not find a statistically significant
effect of institutional ownership on green or fossil innovation. I therefore conducted some
additional estimations, which are not robustness checks in the typical sense. The usual
robustness checks aim to rule out a type I error, i.e., falsely rejecting the null hypothesis.
The additional estimations presented here are rather attempts to rule out a type II error:
failure to reject the null despite an actually existing relationship. Abadie (2020) argues
that insignificant estimates can be highly informative: it is interesting to learn that a
previously expected relationship does not exist. The question is whether insignificant
estimates are meaningful, i.e. can be interpreted as “no effect”. Type II errors are most
likely to result from data quality or research design issues. The two specifications presented
in the following aim to answer the question whether research design or data quality are a
concern.14

Institutional ownership and total innovation A first check concerns the overall
setup of the model, and the sufficiency of data variation in the institutional ownership
variable. The relationship between institutional ownership and patenting is an established
result (Aghion et al. 2013). If the data and model used here cannot confirm this result,
the research design and / or the measurement of the institutional ownership would need to
be re-examined. Equation 3 tests whether institutional ownership affects total innovation
(denoted by A):

PATA,it = exp(αG + βA,IOIOit−1 + βA,1 lnKA,it−1 + βA,2 lnSPILLA,it−1

+ βA,3R&Dit−1 + τA,t + ηA,i + εA,it). (3)
13Further investor type definitions are possible (see section A.2), but are less likely to be relevant in a

climate context, and their results are not shown in the paper.
14In addition, section 5.1 provides results for some specification alterations that also partly address this

question. Section 6 provides a general discussion of the plausibility of the results.
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In this case, previous own knowledge and spillovers in terms of all technologies are included
as explanatory variables. In a robustness check, Tobin’s q is also included. Tobin’s q is
defined as (marketcapitalization+ totaldebt)/totalassets and is therefore a measure of the
market’s future expectations deviating from current fundamentals. As argued in Aghion
et al. (2013), the market valuation of firms may be an omitted variable in a regression
involving institutional ownership and innovation. It is correlated with the number of
patents and could be correlated with institutional ownership, since institutional owners
are more likely to invest in firms with high market valuation.

Firm-specific climate concerns: “climate exposure” The second approach ad-
dresses the question whether there is sufficient statistical power in the dependent vari-
able(s), i.e. in the counts of green and fossil patents; it also addresses the question whether
the degree to which firms are affected by climate issues play a role in explaining innovation.
The degree to which firms are affected by, or concerned about, climate issues varies between
firms and over time. Previous research has shown that firms facing higher fuel taxes tend
to patent more in green technologies, and less in fossil technologies (Aghion et al. 2016). It
is logical to test whether the panel used in this paper can confirm the relationship between
firm-level climate policy impacts and the direction of innovation.

In the context of the research question on institutional ownership and risk from future
climate policies, a newly developed measure is particularly useful: “climate exposure”, an
indicator derived from conference calls between managers and investors. This indicator,
developed by Sautner et al. (2020b), measures the relative frequency with which climate-
related issues are mentioned in these conference calls.

As climate-related issues can be quite broad and diverse, four different sets of bigrams
(expressions) are used: one for broadly defined climate change aspects (“climate change
exposure” or “exposure to a climate change-related shock”), and three for more specific
topics. These are physical, regulatory, and opportunity shocks, relating to physical climate
change-induced events (such as heatwaves or sea-level rise), regulatory changes (such as
CO2 pricing), and opportunities (capturing opportunities related to climate change issues,
mostly green technologies). Since physical shocks are unlikely to influence green or fossil
patenting (the patent classifications do not include technologies for adaptation to climate
change), the measures used in this paper are “climate change exposure”, “regulatory ex-
posure”, and “opportunity exposure”. Table 2 shows the top 10 bigrams contributing to
general climate exposure, regulatory exposure, and opportunity exposure, respectively.

To interpret the exposure measures, it is helpful to think of them as “firm-level exposure
to a particular shock”, where the shock can be positive or negative. For opportunity
shocks, on could think of clean technology subsidies or R%D incentive schemes. However,
the “shocks” can also originate from within the firm, if it initiated or completed green
technology development. Conference calls are held in conjunction with firms’ quarterly
earnings reports, and investors tend to be interested in the firm’s future outlook. The
exposure indicators therefore most likely include current climate policy impacts as well
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Table 2 – Top 10 bigrams contributing to climate exposure measures

Climate exposure Regulatory exposure Opportunity exposure
renewable energy greenhouse gas renewable energy
electric vehicle reduce emission electric vehicle
clean energy carbon emission clean energy
new energy carbon dioxide new energy
wind power gas emission wind power
wind energy air pollution wind energy
energy efficient reduce carbon solar energy
climate change energy regulatory plug hybrid
greenhouse gas carbon tax heat power
solar energy carbon price renewable resource

Notes: These bigrams are the “top 10” since they enter the respective measures with the largest
weights.
Source: Own representation based on Sautner et al. (2020b).

as expectations for future impacts. At the same time, they tell us something about the
awareness of this among managers and investors.15 Being firm- and year-specific, they go
beyond a general notion of “transition risk” due to multilateral climate agreements; they
are more likely to capture (expectations of) implemented policies.

To incorporate these measures of impacts, expectations and awareness, Equation 1 is ad-
justed to read

PATG,it = exp(αG + βG,IOIOit−1 + βG,1 lnKG,it−1 + βG,2 lnKF,it−1

+ βG,3 lnSPILLG,it−1 + βG,4 lnSPILLF,it−1 (4)
+ βG,5R&Dit−1 + βG,6CCExpE,it−1 + τG,t + ηG,i + εG,it),

where CCExpE,it−1 is firm i’s climate exposure in year t− 1, and E stands for the type of
exposure: overall, regulatory, or opportunity. Note that the share of institutional ownership
in the firm is still included in the regression. CCExp is a measure that combines firm-
specific exposure to climate-related shocks with the intensity of their discussion between
management and investors.

If no effect of climate exposure on green or fossil innovation can be detected, this would
be an indication that there is not enough meaningful variation in the dependent variable.
The coefficient on CCExp is also an interesting outcome in itself: it shows whether a more
forward-looking firm-level climate indicator, reflecting awareness at manager and investor
level, can explain firm-level innovation.16

15Unfortunately, the available data does not distinguish whether issues are mentioned by managers or
investors.

16More details on the construction of the climate exposure variable can be found in Appendix A.3.
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4 Data
The main sample consists of 1, 261 publicly listed firms over 10 years (2009-2018), with an
average of 90 patents per firm per year. Table 3 provides summary statistics for the main
variables. Typical for patent data, all patent counts are highly skewed, with the maximum
far away from the mean. The same is true for R%D expenditures. The institutional owner
share of 40.6% on average is comparable to data reported in the literature (Dyck et al.
2019; Bebchuk et al. 2017).

Table 3 – Summary statistics

Mean Standard deviation Minimum Maximum
All patents 89.93 316.17 0 7,975
Fossil patents 3.08 20.22 0 708
Green patents 2.47 16.93 0 794
Patent stock 633.6 1,960.3 0 36,324.3
Fossil patent stock 20.4 118.3 0 4,404.1
Green patent stock 16.3 99.9 0 3,845.9
Spillover 259,268.6 218,863.6 0 584,411.2
Fossil spillover 9,183.1 9,491.4 0 24,151.9
Green spillover 7,577.0 8,560.5 0 21,157.4
R & D exp., in thousand USD 1,117,383 6.96·106 0 6.43·1012

IO share, in percent 40.64 27.10 0 100

Climate-relevant – i.e. fossil or green – patents account for about 6% of total patents. Note
that the sample is restricted to firms which have filed at least one climate-relevant patent
in the sample period. Green and fossil patents are quite similar in terms of patent counts,
patent stocks and spillovers, with green innovation always slightly below fossil. Table 12
in Appendix A.4 shows the respective averages for family size and citations.

The main data source for patents, firms and ownership is Orbis and Orbis Intellectual
Property, offered by Bureau van Dijk (BvD). Orbis provides information on more than 300
million companies worldwide, with the data including standardized financials, ownership
links, and more.

Ownership data Data on ownership is recorded in the Orbis Historical Database. It
provides links between firms and their shareholders, listing the respective ownership shares.
The ownership data is collected from various sources, leading to over-reporting in the
dataset. Extensive manual checks were done to rule out duplicates. In case a duplicate was
identified, preference was given to the most recent reporting, to the most comprehensive
(and thus consistent) data sources,17 or to the parent company in case of holding reportings.

17The most prevalent data source, and therefore most consistent across firms and years, is Factset.
Factset is an independent data provider collecting data on large investors’ holdings, based on filings with
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The ownership data allows to distinguish between different investor types based on their
NACE codes and BvD classifications. Details on the mapping can be found in section A.2
in Appendix A.2. In addition, the headquarter country of each investor is recorded in the
dataset, allowing to identify domestic investors.

Information on the investors’ signature dates in the United Nations Principles for Re-
sponsible Investment initiative is from the PRI’s website.18 The PRI signatories are only
available by name. They were matched to the investor dataset using a fuzzy matching
approach as a first step; this was augmented with a manual check of the matches. In
some cases, it is difficult to find out from an investor’s PRI reporting which parts of the
company can be counted as PRI signatories. The matches were checked with the greatest
care possible, but some mismatches can not be ruled out.

Summary statistics for the different owner types can be found in Table 14 in Appendix
A.4. The average share of governments and Big Three investors is lowest; the ownership
share of domestic owners is the highest of all types used (27.7% on average, more than
half of total institutional ownership, and with a maximum value of 100%). In the shares of
governments as well as insurance and pension fund companies, the variation is somewhat
larger than for the other groups.

Patent data Orbis Intellectual Property is the result of a matching between PATSTAT
(a worldwide patent database run by the European Patent Office) and Orbis. Linked to
company IDs, it provides rich information on each patent, including its classification, date
of publication, and application offices. The dataset in this paper consists of all patents
which were filed at the European Patent Office (EPO), the US Patent and Trademark
Office (USPTO), the Japanese Patent Office (JPO), or the World Intellectual Property
Organization (WIPO) in the relevant period; which were ultimately granted; and which
can be linked to a listed firm (either through direct or indirect ownership, currently or
formerly).

The database offers information of the applicant firm(s), current direct owner(s), and
current indirect owner(s) of the patents. The patents were thus assigned to firms based on
the original applicant (or several original applicants), if this original applicant is a listed
firm. If the original applicant is not listed, but the current indirect owner is (and if there
has been no ownership change), then the patent is assigned to the indirect owner. Since
the database does not easily allow to track indirect ownership of firms over time, cases
with changes in ownership are not assigned an indirect owner. Changes in ownership are
determined by a) using the label “with ownership change” from Orbis, and b) by ensuring
that the data lists the applicant also as the direct owner.

national stock exchange supervision authorities. The most well-known are the so-called “13F” filings, which
are mandatory for investors in US-listed firms when their share crosses a certain threshold. Unfortunately,
the sample could not be restricted to Factset alone, since in many cases important investors appeared
under different sources in different years in the same firm.

18https://www.unpri.org/signatories/signatory-directory
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The estimations use patent applications (a flow) as the dependent variable, but patent
stocks as explanatory variables. In line with the literature, these patent stocks are calcu-
lated using the perpetual inventory method. Firm i’s green patent stock in year t, KG,it,
is equal to the discounted flow of green patents in the previous years:

KG,it = PATG,it + (1 − ρ)KG,it−1, (5)

and symmetrically for fossil (KF,it) or all patents (KA,it), respectively. A discount rate of
ρ = 0.15 is used, which is in the medium range of depreciation rates for intellectual capital
used in the literature.19

Spillovers are accounted for in a relatively straightforward way. A firm’s green spillover at
time t is equal to the sum of green patents applied for in the firm’s country c at time t,
minus the firm’s own green patent applications in that year:

SPILLG,it =
∑
j∈c

PATG,jt − PATG,it. (6)

In all expressions involving the log of a number of patents (i.e. lnK, lnSPILL, as well as
the pre-sample mean), I follow the literature standard of replacing zeroes by an arbitrary
small constant and including dummies for the number of patents being zero (Aghion et al.
2016; Blundell et al. 1999).

Firm data Firm-level data on R&D expenditures and Tobin’s q is from the Orbis Histor-
ical Database. BvD firm-level data is mainly sourced from companies’ mandatory filings.
For companies with subsidiaries, sometimes both unconsolidated and consolidated (includ-
ing subsidiaries) reporting is available. Whenever a company appears as an indirect patent
applicant (or as both direct and indirect), and both filing versions are available, then the
consolidated reporting version is used. In further regressions, more firm-level characteris-
tics were used as control variables (such as operating revenue, capital-labor ratio), but as
they did not alter the results, the respective regressions are not shown in the paper.

Firm-level data is augmented by other sources: Thomson Reuters Datastream was used to
extract time series of index constituents of the STOXX Europe 600 and S&P Global 1200
indices. The time series of the S&P 500 is from Wharton Research Data Services (WRDS).

In addition, the Sautner et al. (2020a) data was merged to the firms to cover firm-level
climate exposure and its recognition with managers and investors. Since all firms in the
sample are publicly listed, ISINs (International Securities Identification Numbers) of their
traded shares could be used to match the firms. The climate change exposure data is
limited in terms of firm coverage and in terms of time series coverage per firm, reducing
the sample size of the dataset to roughly half of the original dataset. Summary statistics

19For example, Aghion et al. (2016) use 20%; Peri (2005) uses 10%, Hall et al. (2005) and Cockburn and
Griliches (1988) use 15%.
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for the reduced sample can be found in Table 15 in Appendix A.4. Firms in the climate
exposure sample have filed more patents (in all categories), have higher R&D expenditures,
and a higher institutional owner share than the average of the full sample.

5 Results

5.1 Institutional owners and climate-relevant innovation
Table 4 show the main results for Equation 1, separately for green and fossil patents.
For each estimation, the first stage of the control function approach is shown in an extra
column. As can be seen from columns 2 and 4, the indexmember instrument is positive
and significant: Institutional investors own about 2.3 percentage points more stocks in
members of large stock indices than we would expect from other observables.

Table 4 – Green and fossil patents

(1) (2) (3) (4)
Model Poisson OLS (first stage) Poisson OLS (first stage)
Dep. var. Green patents L.IO share Fossil patents L.IO share
L.IO share 0.0227 0.0103

(0.0561) (0.0387)
L.Own stock green 1.464∗∗∗ -1.341∗∗∗ 0.0224 -2.550∗∗∗

(0.104) (0.493) (0.107) (0.268)
L.Own stock fossil 0.134∗∗ -1.076∗∗∗ 1.321∗∗∗ -2.556∗∗∗

(0.0617) (0.264) (0.122) (0.524)
L.Green spillover 0.544 -20.05∗∗∗ 0.212 -20.01∗∗∗

(1.141) (0.788) (0.783) (0.781)
L.Fossil spillover -0.515 20.24∗∗∗ -0.223 20.15∗∗∗

(1.147) (0.791) (0.787) (0.783)
L.R and D exp. 0.0131 3.962∗∗∗ 0.0943 4.012∗∗∗

(0.238) (0.170) (0.171) (0.171)
L.Index member 2.286∗∗∗ 2.291∗∗∗

(0.705) (0.705)
Observations 8621 8621

Notes: Robust standard errors in parentheses. Knowledge stocks, spillovers and R&D expenditures are
in logs. Estimation period is 2009-2018. All regressions include year fixed effects and firm fixed effects
using the BGVR method. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

After controlling for their endogeneity, the influence of institutional investors on both green
and fossil patenting is positive, but statistically indistinguishable from zero. Based on the
aggregate measures of green and fossil patents as well as institutional ownership used here,
I cannot say that there is any causal relationship between institutional ownership and green
or fossil patenting.

The results do, however, qualitatively confirm the findings from Aghion et al. (2016) on
path dependency: A higher fossil (green) patent stock significantly increases the probability
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of filing another fossil (green) patent. The data also confirm another result, namely that a
firm’s fossil knowledge stock is also associated with more green patenting, whereas the green
knowledge stock does not affect fossil patent applications. Overall, the path dependency
model seems to fit the data quite well. The very simple spillover measure applied in this
estimation is not significant though, neither for green nor for fossil patenting.

Accounting for sector heterogeneity As mentioned in section 3.4, the aggregate mea-
sures on green and fossil patenting may hide some important differences between the energy
and the transport sector. Most likely, (green) innovations play a larger role in the trans-
port sector than in the capital-heavy energy sector. Moreover, product market competition
likely differs between these sectors, with implications for the innovation process and owner-
ship.20 Table 5 therefore shows results for green and fossil patents in the transport (columns
1 and 2) and energy sector (columns 3 and 4) separately. In all cases, the coefficient on
institutional ownership is small or even negative, and the null hypothesis of it being zero
cannot be rejected.

Again, the general path dependency model performs well: Both green and fossil trans-
port knowledge stocks influence green transport patenting positively, while green transport
knowledge is not associated with an increase in fossil transport patenting – this is in line
with the results in Aghion et al. (2016), which are in fact focused on the transport sector.
In the case of energy-related patents, the same pattern can be observed with very similar
coefficients. This suggests that the specification in Equation 2 works well for both sectors.

Accounting for investor heterogeneity The insignificant influence of institutional
owners on the direction of innovation may also be due to the underlying heterogeneity of
investors, as mentioned in section 3.4.21 Not all institutional owners invest with a long
time horizon, not all of them have voiced an interest in climate change issues, and not all of
them are prone to engage. The results for the effect of different types of investors on green
innovation can be found in Table 6. This table only shows the coefficient for investor type
ownership; the full tables for green as well as fossil innovation can be found in Appendix
A.5 (Tables 18 and 19).

For governments, PRI signatories, and insurers and pension funds, one might expect a
particular interest in long-term investments and a preference for low transition risk. The
results for the three groups can be seen in columns 1-3. The coefficient on government
ownership and PRI signatory ownership is large and positive (a one percentage point
increase in PRI signatory ownership is associated with 3 percent more green patents in the
following year), but insignificant. For insurance and pension fund companies, no significant
influence on the direction of innovation of their portfolio companies can be detected either;

20For the relevance of competition in the context of (green) innovation and ownership, see e.g. Aghion
et al. (2005), Atanassov (2013), Borochin et al. (2020), Lambertini et al. (2017), and Nesta et al. (2014).

21For summary statistics for the respective owner types, please refer to Table 14.
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Table 5 – Patents split into transport and energy sectors

Sector Transport Energy

(1) (2) (3) (4)
Dep. var. Green patents Fossil patents Green patents Fossil patents
L.IO share 0.0104 -0.116 -0.0462 0.0352

(0.0599) (0.106) (0.0448) (0.0229)
L.Own stock gr. tr. 1.656∗∗∗ -0.198

(0.188) (0.379)
L.Own stock fo. tr. 0.169∗∗∗ 1.952∗∗∗

(0.0457) (0.224)
L.Green tr. spillover 0.308 -1.776

(1.016) (1.839)
L.Fossil tr. spillover -0.251 1.567

(0.940) (1.710)
L.Own stock gr. en. 1.561∗∗∗ 0.0978

(0.122) (0.0687)
L.Own stock fo. en. 0.193∗ 1.416∗∗∗

(0.109) (0.0889)
L.Green en. spillover -0.648 0.541

(0.715) (0.356)
L.Fossil en. spillover 0.645 -0.550

(0.721) (0.357)
L.R and D exp. 0.0497 0.584 0.331 -0.0237

(0.238) (0.434) (0.212) (0.110)
Observations 8622 8622 8622 8622

Notes: All columns: Poisson control function estimation (first stage not shown). Robust standard
errors in parentheses. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation
period is 2009-2018. All regressions include year fixed effects and firm fixed effects using the BGVR
method. First stage of control function not shown. Significance levels are indicated as ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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the coefficient even turns negative. This result may be due to the necessary aggregation
of this investor type (see section A.2 for details).

Table 6 – Special investor types and green patenting

(1) (2) (3) (4) (5)

L.Gov. share 0.0342
(0.0882)

L.PRI sig. share 0.0343
(0.0796)

L.Ins.& pens. fd. share -0.121
(0.298)

L.Domestic owner share -0.0210
(0.0505)

L.Big 3 share 0.0257
(0.0610)

Observations 8622 8622 8622 8622 8622

Notes: Dependent variable: Green patents. All columns: Poisson control function estimation (first
stage not shown). Robust standard errors in parentheses. Estimation period is 2009-2018. All regres-
sions include year fixed effects and firm fixed effects using the BGVR method. Further regressors not
shown. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Domestic investors (column 4) are not necessarily more interested in climate issues, but
may have better capacities to engage in firms close to them. However, this ability is not
reflected in the results, where the coefficient on domestic investors is insignificant and even
negative. Column 5 reports results with the share of the “Big Three” index fund managers
(BlackRock, Vanguard, and State Street) as the dependent variable. All of them have
voiced concern about climate risk.22 Given their limited ability to influence their risk via
selection, the engagement channel might be particularly important for them. Although
the Big Three have been shown to contribute to emission reductions of firms (Azar et al.
2020), the insignificant coefficient suggests that their engagement activities do not yet
address technological risk in a measurable way.

In summary, the findings for all of these investor types are the same as for the aggregate:
no statistically significant effect of a larger ownership share of any particular investor type
on green or fossil patenting can be detected.

Some further specification alterations Tables 16 and 17 in Appendix A.5 show re-
sults for some basic changes in the specification.

One could argue that institutional investors have a particular interest to direct innovation
towards high-quality green patenting. Despite focusing on patents which are ultimately
granted, patent counts may not capture patent quality sufficiently. As described in section

22In fact, they are all PRI signatories, implying some overlap between the Big Three type and the PRI
signatory type.
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2, family size could be a useful measure in the context of this analysis: it captures the
firm’s expected commercial value of the patent, and it suffers less from sample censoring
than citations. Columns 1 and 2 of Table 16 show the impact of institutional ownership
on the family size of green and fossil patents, respectively. The coefficients decrease in size
and remain insignificant. Owners’ concern with innovative quality does not seem to be the
main issue.

Another concern could be that the dichotomy of green and fossil technologies does not
fully capture climate-relevant innovation. There is also the interim case of grey patents,
which make fossil technologies more efficient and thus reduce emissions. It is possible
that investors value the (potentially) low cost and low risk character of these types of
incremental innovations. As column 3 in Table 16 shows, this hypothesis is not supported
by the data.

One of the main arguments why institutional owners can exert influence on firms is that
their large stakes imply more concentrated ownership. It might therefore only be the largest
owners that drive successful engagement. In columns 1 and 2 of Table 17, the share of
institutional ownership is replaced by the share of the five largest owners. The coefficient
is negative in both cases, and insignificant.

It is also possible that the influence of institutional investors takes longer to materialize
than one year.23 Columns 3 and 4 of Table 17 therefore show results for a two-year lag of
institutional ownership, IOit−2. The coefficient on green patenting gets larger compared
to the baseline, and the coefficient on fossil patenting gets smaller, indicating that there
might be some truth in this argument; however, the coefficients are still insignificant.

5.2 Institutional owners and total innovation
From the results presented so far, the interim conclusion is that there is no evidence of
institutional owners influencing the direction of innovation in firms. However, this lack of
significant effects on climate-related patenting might be due to specification or data issues
that have nothing to do with the green and fossil patents themselves. Can the data and
model identify any effect of institutional ownership on innovation? To answer this question,
equation 3 is estimated, covering all patents.

The main results from these regressions (omitting all explanatory variables except insti-
tutional ownership from the table24) are presented in Table 7. In this case, institutional
ownership has a positive and significant effect on total innovation: A ten percentage point
increase in institutional ownership leads to 11.4% more patent filings. At the mean, this
would mean a shift from 40.6 to 50.6% in institutional ownership resulting in an increase
from 89.9 to 100.2 patents. Despite a different model equation, this result is quite close
to the findings in Aghion et al. (2013), where the Poisson specification delivers coefficients

23Atanassov (2013), for instance, uses a time lag of two years.
24The complete results are available in Appendix A.5, Table 20.
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between 0.007 and 0.010. It is surprisingly robust over a wide range of specifications.
Column 1 shows the baseline Poisson control function regression of equation 3, which is
comparable to the estimations in Tables 4 and 5. Column 2 introduces two-way clustering
of standard errors at the 4-digit NACE code and country level.

In column 3, an additional control variable is introduced: Tobin’s q, a measure of the
market’s future expectations deviating from current fundamentals. It could bias the results,
since it might be correlated with patents as well as institutional ownership. However,
controlling for Tobin’s q hardly changes the coefficient on institutional ownership; as shown
in Table 20, the coefficient on Tobin’s q is also insignificant.

In columns 4 and 5, robustness with respect to the choice of patent count measure is tested.
Column 4 uses family-weighted patents in all patent variables, and column 5 uses citations.
The citation-based regression is the only one without a significant effect of institutional
ownership. As explained in section 2, citations suffer particularly from sample attrition
due to the time line of the patenting and citation process. Also, the number of citations
can be zero, which leads to an excessive amount of zeroes especially towards the end of
the sample (whereas the family size of each patent is always at least 1, the patent itself).
Finally, column 6 changes the estimation model from Poisson to negative binomial, which
is sometimes recommended in case of overdispersion of the data.25 The coefficient on
institutional ownership gets smaller, but is still significant.

Table 7 – Institutional investors and total patents

(1) (2) (3) (4) (5) (6)
Model Poisson Poisson Poisson Poisson Poisson Neg. bin.
Dep. var. Patents Patents Patents Family size Citations Patents
L.IO share 0.0114∗∗∗ 0.0114∗∗ 0.0110∗ 0.0129∗∗ -0.0258 0.00671∗∗

(0.00348) (0.00481) (0.00603) (0.00624) (0.0177) (0.00310)
Clustered SEs no yes yes yes yes yes
Add. control no no yes no no no
Observations 8622 8622 8040 8622 8622 8622

Notes: All estimations use a control function approach (first stage not shown). “Add. control” refers
to the inclusion of Tobin’s q as an additional control variable. Robust standard errors in parentheses.
In the Poisson control function estimations starting in column 2, standard errors are two-way clustered
at the 4-digit NACE code and country level. In the negative binomial control function estimation,
standard errors are clustered at the 4-digit NACE code level. Knowledge stocks, spillovers and R&D
expenditures are in logs. Estimation period is 2009-2018. All regressions include further controls, year
fixed effects, and firm fixed effects using the BGVR method. Significance levels are indicated as ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

From Table 7, we can conclude that a connection between institutional ownership and inno-
vation can be established with the given data and model. Looking at the combined results

25Note that the GMM-based ivpoisson estimator implemented in Stata works for any exponential model
with multiplicative error and is robust to overdispersion. The negative binomial estimator, on the other
hand, is less robust to misspecification.
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on carbon-relevant and total patenting, investors appear to encourage overall innovation,
while not exerting any influence on climate-relevant innovation. However, the estimates
on total patenting may simply be more precise because of higher counts of total patents
in the data. As can be seen in the summary statistics in Table 3, climate-relevant patents
account for only about 6% of the patents in the sample (which, notably, is a sample of
companies which have filed at least one green or fossil patent during the sample period).

5.3 Climate exposure and climate-relevant innovation
This section presents results for testing Equation 4, including climate exposure as an
explanatory variable. This specification is a check for statistical power in the dependent
variable, looking for any measurable influence between patents and a variable that is not
directly innovation-related. It also helps to find out whether firm-specific concerns with
climate issues explain green or fossil patenting.

As described in detail in section 3.5, the Sautner et al. (2020a) dataset measures different
types of “climate exposure” at firm level based on transcripts of firms’ quarterly earnings
conference calls with investors. The data reflect both managers’ and investors’ awareness
of these issues. “Climate exposure” can be understood as “exposure to a climate-related
shock” specific to the firm. The general “climate exposure” variable can refer to any
climate-related shock. The Sautner et al. (2020a) dataset also offers more specific indica-
tors, which are of interest here: “Regulatory exposure” reflects the discussion of climate
policies affecting the firm; “opportunity exposure” reflects the discussion of opportunities
the firm faces in conjunction with climate issues. Sautner et al. (2020b) show that both
of these measures are correlated with other available indicators for climate regulation at
country or firm level. Aghion et al. (2016) find a clear relationship between policy-driven
fuel prices and a redirection of innovation away from dirty and into clean technologies. We
would expect regulatory exposure to have a similar effect.

Table 8 shows the effects of different measures of climate change exposure on green (columns
1-3) and fossil (columns 4-6) patenting.26 Overall climate change exposure is significantly
positively associated with green patenting. Exposure to regulatory shocks, however, does
not have any significant impact on green or fossil patenting. Regulatory exposure as
measured by Sautner et al. (2020a) differs from policy exposure as measured by fuel prices
(Aghion et al. 2016) in one key aspect: Fuel prices are measures of existing climate policies.
They are observable, and firms can easily build expectations regarding future fuel prices
(at least the tax component of it) based on past fuel prices. This is what might make
lagged fuel prices a good predictor of green patenting.27 The regulatory climate change

26The inclusion of the climate change exposure measures significantly reduces sample size. For the sake
of completeness, Table 21 reproduces the baseline results (comparable to Table 4) for the reduced sample.
Table 15 reports summary statistics for the reduced sample.

27The fact that tax-driven fuel price changes can lead to larger fuel demand changes is an established
result in the literature on environmental and energy economics, see e.g. Li et al. (2014) and Davis and
Kilian (2011). It is usually attributed to the predictability of the tax component.
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Table 8 – Climate exposure and carbon-relevant patenting

(1) (2) (3) (4) (5) (6)
Dep. var. Green

patents
Green
patents

Green
patents

Fossil
patents

Fossil
patents

Fossil
patents

L.IO share -0.00790 -0.000916 -0.0126 0.00964 0.00749 0.00927
(0.0266) (0.0268) (0.0274) (0.0220) (0.0234) (0.0228)

L.CC Exposure 0.0617∗∗ -0.0188
(0.0301) (0.0203)

L.CC Regulatory Exp. -0.0893 -0.00158
(0.454) (0.156)

L.CC Opportunity Exp. 0.134∗∗∗ -0.0249
(0.0471) (0.0346)

L.Own stock fossil 0.0638 0.0640 0.0652 1.364∗∗∗ 1.337∗∗∗ 1.346∗∗∗

(0.0645) (0.0524) (0.0683) (0.117) (0.113) (0.120)
L.Own stock green 1.443∗∗∗ 1.498∗∗∗ 1.424∗∗∗ 0.0256 0.00423 0.0235

(0.106) (0.114) (0.111) (0.117) (0.132) (0.125)
L.Green spillover -0.147 -0.0359 -0.190 0.0631 0.0502 0.0679

(0.288) (0.293) (0.297) (0.219) (0.236) (0.227)
L.Fossil spillover 0.183 0.0384 0.246 -0.0656 -0.0439 -0.0683

(0.354) (0.362) (0.365) (0.284) (0.306) (0.296)
L.R and D exp. 0.165∗∗∗ 0.110∗∗∗ 0.175∗∗∗ 0.118∗∗∗ 0.132∗∗∗ 0.125∗∗∗

(0.0348) (0.0314) (0.0389) (0.0456) (0.0452) (0.0467)
Observations 3972 3972 3972 3972 3972 3972

Notes: All estimations: Poisson control function estimation (first stage not shown). Robust standard
errors in parentheses, two-way clustered at the 4-digit NACE code and country level. Estimation period
is 2009-2018. All regressions include year fixed effects and firm fixed effects using the BGVR method.
Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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exposure measure probably reflects more long-term expectations voiced by investors. In
line with the insignificant results on institutional owner shares, it seems that the concerns
about expected regulation do not (yet) translate into a change in the direction of innovation
within firms.28

Exposure to opportunity shocks, on the other hand, is significantly positively associ-
ated with green patenting. According to these results, a one standard deviation in-
crease in climate opportunity exposure leads to a staggering 25% increase in green patents
(0.134*1.887). As shown in Table 2, the top bigrams for opportunity and overall exposure
are very similar, indicating that the frequency of opportunity-related keywords is driving
the results for overall climate change exposure.

Given the way in which the “climate change opportunity” measure is constructed, it is
difficult to interpret the effect as causal. The question is what “exposure to opportunity
shocks” actually means. Only very few of the underlying bigrams relate to opportunity-
creating policies, which would reflect an exogenous opportunity shock. Looking at the
bigrams, it is possible that investors are making management aware of green opportunities
in a more general sense, and push for more innovation. It is, however, also likely that
managers mention particular green R&D successes in earnings conference calls – resulting
in high “climate change opportunity” measures –, which are followed by green patent
applications in the next year. Therefore, the results from table 8 suggest that “climate
change opportunity exposure” is a good predictor of green patenting activity, but not
necessarily reflecting a causal relationship.

Nevertheless, the clear results on climate change opportunity exposure (with the expected
sign) indicate that the patent data exhibit sufficient variation over time to detect effects of
firm-specific characteristics related to climate risk and institutional ownership. This is an
indication that the nonsignificant results can be interpreted as “no effect”. In this light, it
is interesting that fossil patenting is not affected by any climate-related exposure. There
is no evidence that green technologies crowd out fossil ones, or that technological risk is
addressed by actively moving out of fossil technologies.

6 Conclusion
The tightening of climate policies entails transition risk not only for fossil fuel producers
and emitters, but also for innovators in related technologies: their knowledge is at risk of
losing value due to climate policy. This translates into a risk for investors of the affected
technology firms. This paper explores whether institutional investors have recognized this
risk, and whether their engagement directs firms’ innovation into green technologies.

The analysis draws on the growing literature on the role of institutional investors in equity
markets. Via direct conversations and voting in shareholder meetings, large asset managers

28Regressions using the second lag of regulatory exposure yield insignificant coefficients as well. Results
are available upon request.
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and funds can influence the behavior of firms (Appel et al. 2016, 2018; Dimson et al. 2015)
and have been shown to encourage innovation (Aghion et al. 2013; Bushee 1998). The
underlying idea is that many institutional investors have a more long-term perspective
than “myopic” managers who are incentivized by short-term performance goals.

In this paper, I construct a worldwide firm-level panel on patents and institutional own-
ership. A classification of patents into green and fossil technology categories is applied to
measure firm-specific technological knowledge and innovation. I then estimate a dynamic
patent count data model building on Aghion et al. (2016), where patenting depends on
previous knowledge, spillovers, R&D efforts, and the share of institutional ownership. The
endogeneity of institutional ownership is addressed by a control function approach.

I find robust evidence for the positive influence of institutional ownership on overall patent-
ing activity. However, there is no evidence for any effect on fossil or green technologies,
not even for investors with long-term perspective or signatories of the UN Principles for
Responsible Investment (UN PRI). The results also hold when looking specifically at the
transport sector, where technological knowledge likely plays a larger role. These results
are in contrast to previous studies which show a positive relationship between climate pol-
icy and green innovation (Aghion et al. 2016), and between institutional ownership and
environmental outcomes (Dyck et al. 2019; Dimson et al. 2015; Azar et al. 2020). Insti-
tutional investors seem to perceive and address technological risk differently from overall
environmental or transition risks.

To find out whether climate-relevant patenting can be explained by firm-specific climate-
related risks, I use a newly developed dataset on firm-level climate exposure (Sautner et
al. 2020a). It is based on firms’ conference calls with investors and measures the rela-
tive frequency at which climate-related terms are mentioned. I find a significant positive
relationship between “climate opportunity exposure” and subsequent green variation. I
cannot ascertain that this is a causal effect of an exogenous opportunity shock, e.g., green
technology support schemes. What the indicator rather seems to reflect is that managers
talk about green innovation activity that is filed as a patent in the following year.

The results on climate exposure can be used to address another issue. If the insignificant
effects I find for institutional ownership just result from a dataset with insufficient variation,
they do not have any informational value. The climate exposure results show that there is
sufficient statistical power in the data to detect a relationship between green patents and a
variable that is not directly related to innovation. The insignificant effect of institutional
ownership on green and fossil innovation can therefore likely be interpreted as a zero effect.

It is remarkable that neither institutional ownership, nor firm-specific regulatory or op-
portunity shocks have any effect on fossil patenting. Moving out of fossil technology de-
velopment does not (yet) seem an answer to (expected) policies. Possibly, the use of fossil
technologies still generates too much income today to be given up in favor of more future-
oriented technologies; neither investors nor regulation appear to generate sufficient pressure
to draw managers away from their “cash cows”. For the large, publicly listed firms which
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constitute my sample, such a turnaround may be particularly difficult.29

One reason for the missing influence of institutional ownership on fossil as well as green
technologies could be related to reputational concerns, or the lack thereof. “ESG risks” are
often reputation risks: a firm may be affected by negative headlines in case of oil spills or
worker protests, for example. Innovation is less visible. It is possible that investors’ main
concern is about reputational risk, and they are therefore less interested in the direction
of innovation.

Policy uncertainty has been shown to reduce innovation (Bhattacharya et al. 2017) and
could be another explanation for the absence of an effect of institutional ownership on
climate-relevant patenting. With climate policy uncertainty, investors’ strategy might be
to support innovation in other fields rather than betting on green or fossil technologies.
An important next step in this line of research would be to examine events that reduce
policy uncertainty and the resulting market valuation of green and fossil patenting.

This also points to a related issue: the timing of this analysis. Event studies have shown
that the conclusion of the Paris Agreement changed investors’ expectations regarding cli-
mate policy stringency (Ramelli et al. 2019; Kruse, Mohnen, and Sato 2020). Despite
early actions such as the launch of the UN PRI in 2006, investors may have only started
to recognize and address transition risk more recently. It is possible that too few years
have passed since Paris to detect an effect of institutional ownership on the direction of
innovation – but repeating the analysis in a couple of years may provide a different picture.

29In the management literature, we can find the idea that established companies focus more on incre-
mental improvements, whereas small start-ups create “disruptive innovation” (Christensen et al. 2015).
As most green innovations can still be regarded as more “novel” (Dechezleprêtre et al. 2017), a typical
strategy for an incumbent firm would be to continue with their traditional business areas, and to acquire
new-technology startups. In future research, it would be interesting to see whether an increase in indirect
green knowledge acquisition can be observed in the data, and whether institutional investors support this.
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A Appendix

A.1 Patent example and patent classification codes

Figure 1 – Patent example
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Table 9 – Patent classification codes: transport

GREEN
B60K 1 Arrangement or mounting of electrical propulsion units
B60K 6 Arrangement or mounting of hybrid propulsion systems comprising electric mo-

tors and internal combustion
B60K 16 Arrangements in connection with power supply of propulsion units in vehicles

from force of nature, e.g. sun or wind
B60L 3 Electric devices on electrically-propelled vehicles
B60L 7 Dynamic electric regenerative braking
B60L 8 Electric propulsion with power supply from force of nature, e.g. sun, wind
B60L 9 Electric propulsion with power supply external to vehicle
B60L 11* Electric propulsion with power supplied within the vehicle
B60L 13 Electric propulsion for monorail vehicles, suspension vehicles or rack railways;

Magnetic suspension or levitation for vehicles
B60M Power supply lines, or devices along rails, for electrically-propelled vehicles
B60L 15 Methods, circuits, or devices for controlling the traction-motor speed of

electrically-propelled vehicles
B60R 16 Electric or fluid circuits specially adapted for vehicles and not otherwise provided

for
B60S 5/06 Supplying batteries to, or removing batteries from, vehicles
B60W 10** Conjoint control of vehicles sub-units of different type or different function (for

propulsion of purely electrically-propelled vehicles with power supplied within
the vehicle B60L0011)

B60W 20** Control systems specially adapted for hybrid vehicles
H01 M8 Fuel cells

GREY***
F02M 39, F02M 71 Fuel injection apparatus
F02M 3/02-05 Idling devices for carburettors preventing flow of idling fuel
F02M 23 Apparatus for adding secondary air to fuel-air mixture
F02M 25 Engine-pertinent apparatus for adding non-fuel substances or small quantities

of secondary fuel to combustion-air, main fuel, or fuel-air mixture
F02D 41 Electric control of supply of combustion mixture or its constituents
F02B 47/06 Methods of operating engines involving adding non-fuel substances or anti-knock

agents to combustion air, fuel, or fuel-air mixtures of engines, the substances
including non-airborne oxygen

FOSSIL
F02B* Internal-combustion piston engines; combustion engines in general
F02D** Controlling combustion engines
F02F Cylinders, pistons, or casing for combustion engines; arrangements of sealings

in combustion engines
F02M Supplying combustion engines with combustiles mixtures or constituents thereof
F02N Starting of combustion engines
F02P Ignition (other than compression ignition) for internal-combustion engines
* : A patent with code B60L 11 is not considered clean when it is also classified as F02B (e.g., a diesel
locomotive).

** : Patents with code B60W 10 and B60W 20 are not considered as clean when they are also classified
as F02D.

*** : Note that codes classified as grey are a subset of codes classified as fossil in the transport case.
Source: Adapted from Dechezleprêtre et al. (2017), using information from the International Patent
Classification. In this table, all codes are from the International Patent Classification (IPC).
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Table 10 – Patent classification codes: energy

GREEN
Y02E 10 Energy generation through renewable energy sources
Y02E 30 Energy generation of nuclear origin
E02B 8/08 Tide or wave power plants
F03B 13/10-26 Submerged units incorporating electric generators or motors characterized by

using wave or tide energy
F03D Wind motors
F03G 4 Devices for producing mechanical power from geothermal energy
F03G 6 Devices for producing mechanical power from solar energy
F03G 7/05 Ocean thermal energy conversion
F24J 2 Use of solar heat
F24J 3 Other production or use of heat, not derived from combustion
F24S Solar heat collectors; solar heat systems
F24T Geothermal collectors; geothermal systems
F26B 3/28 Drying solid materials or objects by processes involving the application of heat

by radiation, e.g. from the sun
GREY

Y02 E20 Combustion technologies with mitigation potential
Y02 E50 Technologies for the production of fuel of non-fossil origin

FOSSIL
C10 G1 Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-

melting solid carbonaceous or similar materials, e.g. wood, coal
C10 L1 Fuel
C10 J Production of fuel gases by carburetting air or other gases
F01 K Steam engine plants; steam accumulators; engine plants not otherwise provided

for; engines using special working fluids or cycles
F02 C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply

in air-breathing jet-propulsion plants
F22 Steam generation
F23 Combustion apparatus; combustion processes
F27 Furnaces; kilns; ovens; retorts
Source: Adapted from Dechezleprêtre et al. (2017), using information from the International Patent
Classification and Cooperative Patent Classification.
In this table, the patent classes starting with Y are from the Cooperative Patent Classification (CPC),
all other codes are from the International Patent Classification (IPC).
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A.2 Mapping of investor types
Table 11 provides an overview of the mapping of shareholder types. The shareholders
are identified by their own BvD ID (if available). In order to classify them into different
shareholder types, both their NACE code and the “entity type” asigned by BvD are used.
Each of the classifications have their own advantages and disadvantages. NACE codes
generally allow for a good distinction between private financial services institutions, such
as banks, investment funds, or insurance and pension funds. However, outside of the fi-
nancial services classification, NACE codes become less useful: many foundations, private
funds or even cooperative banks are classified as “Activities of membership organizations”.
The shareholder types provided by BvD, on the other hand, identify these institutions
more clearly. Moreover, they are generally useful to distinguish between individuals and
institutional investors, and to differentiate between government investors and private ones.
Within private investment organizations, the attribution of types in the BvD classification
seems somewhat arbitrary (e.g. pension funds are sometimes coded as “insurance com-
panies”, and BlackRock is labelled “Bank”). Therefore, the financial sector classification
follows, and slightly adapts, the approach from Battiston et al. (2017):

• The Orbis classification is used in case of “Government” and “Foundation”.

• In all other cases, the NACE classification is used, if it is available and if it is equal
to some financial services-related sector (for the mapping, see Table 11).

• If no NACE code is available or if it is not related to financial services, the Orbis
classification is used (for the mapping, see Table 11).

• Investors which do not belong to the institutional ownership category are dropped
from the analysis:

– In case the Orbis classification lists them as “Industrial Company”, “self-owned”,
or “One or more known individuals or families”, observations are excluded.

– In case the Orbis classification lists them as “Other unnamed private share-
holders” or “Other unnamed shareholders”, they are excluded if there is no
NACE code available (these often appear to be unclassified funds or investment
vehicles).

Firms are assigned dummies whenever a Global Ultimate Owner for them is reported who
controls more than 50% or more than 25%, respectively, and if this Global Ultimate Owner
is different from the firm itself. Another dummy indicates that a firm is self-owned.
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Table 11 – Mapping of shareholder types

Type NACE Rev. 2
4-digit codes

BvD Entity types

Bank 6410-6419 Bank
Insurance and Pension
funds

6510-6539,
6620-6629

Insurance company; Mutual &
Pension Fund/ Nominee/
Trust/ Trustee

Investment fund 6420-6439, 6491,
6612, 6630-6639

Hedge fund; Private equity

Other Credit Institutions 6492, 6499 Venture Capital
(Other) Financial Services 6611, 6619, 6400 Financial Company
Government Government
Foundation Foundation

Notes: For types in normal font, the NACE code was given precedence; only if it was
missing or equal to none of the listed codes, the BvD classification was used.
For types in italics, the BvD classification was used regardless of the NACE classification
code.

A.3 Background on climate exposure variable
Publicly listed firms are required to report their quarterly earnings; in conjunction with
these reportings, firm managers hold conference calls with investors and analysts. Sautner
et al. (2020b) have developed a method – and corresponding dataset – to measure firm-
specific climate change exposure by the use of transcripts of these conference calls. The
conference calls are considered to play an important role in reducing information asym-
metry between managers and investors, and have been described as “more or less routine”
(Hollander et al. 2010) for already quite a while. Transcripts of the conference calls are
available from financial data providers such as Thomson Reuters.

Importantly, a conference call consists of two parts: a presentation by management is
followed by a question-and-answer round. In the first part, managers can choose what
information to disclose; in the second part, call participants can ask questions also about
issues which were not disclosed previously. Therefore, conference calls provide an important
source of information beyond voluntary disclosure such as in sustainability reports.

The conference calls can cover virtually any topic of relevance to the firm at the time. With
the help of the transcripts and machine learning algorithms, certain words or expressions
can be identified and assigned to a topic of interest. Sautner et al. (2020b) develop and
use a set of signal word combinations (termed “bigrams”) related to climate change and
climate policy to derive a measure of “climate change exposure” at firm-year level.

Similar methods have been used to identify risks and opportunities that firms face in
various dimensions, such as political risk (Hassan et al. 2019), uncertainty about Brexit
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(Hassan et al. 2020b), or even Covid-19 (Hassan et al. 2020a). In this literature, the term
“exposure” is used to describe “the proportion of the conversation during the conference
call that is centered on a particular topic” (Sautner et al. 2020b).30

A.4 Further summary statistics

Table 12 – Average patent numbers per firm and year

Green Fossil All patents
Raw patent count 2.47 3.08 89.93
Family-size-weighted patent count 8.85 10.97 287.35
Average family size per patent 3.58 3.56 3.20
Citation-weighted patent count 1.25 1.50 150.85
Average citations per patent 0.51 0.49 1.68

Notes: The table shows averages over all sample years. Due to the
lagged structure of the estimation, the sample period for patents is
2010-2018. Note that in this paper’s definition, family size is at least
equal to 1 (each patent is applied for at least once in one country).
Citations, on the other hand, can be zero.

30This use of the term exposure differs from how the term “risk exposure” is defined in the asset pricing
literature, see Hassan et al. (2019) for a discussion.
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Table 13 – Mean number of fossil, green and all patents, family size and citations over time

Year Green
patent
count

Green
patent
family
size

Green
patent
cita-
tions

Fossil
patent
count

Fossil
patent
family
size

Fossil
patent
cita-
tions

All
patents
count

All
patents
family
size

All
patents
cita-
tions

2010 3.58 14.84 2.04 3.49 13.99 2.23 109.68 399.60 281.11
2011 3.90 14.92 2.38 3.80 15.13 2.96 109.02 389.46 273.82
2012 4.07 15.33 2.27 4.02 15.04 2.90 119.81 413.71 273.22
2013 3.12 10.95 1.92 4.08 15.76 2.26 116.61 390.00 197.16
2014 2.65 9.45 1.48 4.01 13.62 1.74 106.75 345.31 148.77
2015 2.45 7.81 0.79 3.94 12.84 1.14 107.25 320.00 124.30
2016 1.67 5.14 0.48 2.67 8.47 0.52 75.05 205.93 77.61
2017 0.97 2.83 0.22 1.53 4.33 0.15 51.10 120.74 28.39
2018 0.35 0.84 0.03 0.51 1.17 0.03 24.28 49.24 4.45
Average 2.47 8.85 1.25 3.08 10.97 1.50 89.93 287.35 150.85

Notes: Numbers are shown for patents applied for in the given year. Patent numbers are based on a
sample of publicly listed firms which filed at least one patent classified as green or fossil in the sample
period. Due to the lagged structure of the estimation, the sample period for patents is 2010-2019.

Table 14 – Summary statistics for different investor types

Mean Standard deviation Minimum Maximum
Gov. share 3.07 5.97 0 89.08
PRI sig. share 8.83 8.90 0 52.26
Ins. and PF share 6.45 7.18 0 81.35
Domestic share 27.73 24.99 0 100.00
Big 3 share 5.97 6.48 0 30.25
Observations 8.622

43



A APPENDIX

Table 15 – Summary statistics for climate change exposure sample

Mean Standard deviation Minimum Maximum
CC Exposure 1.988 3.353 0 37.648
CC Regulatory Exp. 0.098 0.448 0 11.111
CC Opportunity Exp. 0.898 1.887 0 26.037
All patents 125.64 411.11 0 7,975
Fossil patents 3.91 24.45 0 708
Green patents 3.16 23.10 0 794
Patent stock 844.7 2471.1 0 36324.3
Fossil patent stock 25.6 156.9 0 4404.1
Green patent stock 20.2 137.0 0 3,845.9
Spillover 179,300.7 151,570.5 0 584,380.8
Fossil spillover 4,625.5 5,829.4 0 24,151.9
Green spillover 3,094.1 5,161.2 0 21,157.4
R & D expenditures, in thousand USD 2,307,401 1.03·1011 0 6.43·1012

IO share, in percent 56.21 24.57 0 100
Notes: CC Exposure is “Climate Change Exposure”, CC Regulatory Exp. is “Climate Change
Regulatory Exposure”, and CC Opportunity Exp. is “Climate Change Opportunity Exposure” as
constructed in Sautner et al. (2020a); all climate exposure variables are scaled by the factor 1000
compared to the Sautner et al. (2020a) dataset.
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A.5 Further estimation results
Table 16 – Family size and grey patents

(1) (2) (3)
Dep. var. Green family size Fossil family size Grey patents
L.IO share 0.000346 -0.00364 -0.00489

(0.0391) (0.0276) (0.140)
L.Own stock fossil, FS 0.105∗∗∗ 0.887∗∗∗

(0.0385) (0.0858)
L.Own stock green, FS 1.034∗∗∗ 0.0332

(0.0838) (0.0672)
L.Green spillover, FS 0.0104 -0.0205

(0.598) (0.417)
L.Fossil spillover, FS -0.0304 0.00764

(0.598) (0.414)
L.R and D exp. 0.128 0.165 0.330

(0.166) (0.123) (0.602)
L.Own stock fossil 0.378

(0.246)
L.Own stock green -0.271

(0.329)
L.Own stock grey 1.896∗∗∗

(0.231)
L.Green spillover -0.153

(2.935)
L.Fossil spillover -0.730

(2.328)
L.Grey spillover 0.810

(0.756)
Observations 8622 8622 8622

Notes: All columns: Poisson control function estimations (first stage not shown). Robust standard
errors in parentheses. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation
period is 2009-2018. All regressions include year fixed effects and firm fixed effects using the BGVR
method. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

45



A APPENDIX

Table 17 – Ownership concentration and two-year lag

(1) (2) (3) (4)
Dep. var. Green patents Fossil patents Green patents Fossil patents
L.Top 5 share -0.0629 -0.0282

(0.148) (0.102)
L2.IO share 0.0673 -0.00383

(0.0705) (0.0414)
L.Own stock fossil 0.101∗ 1.283∗∗∗ 0.170∗∗ 1.295∗∗∗

(0.0536) (0.0780) (0.0768) (0.124)
L.Own stock green 1.435∗∗∗ 0.00734 1.575∗∗∗ -0.00861

(0.0715) (0.0502) (0.154) (0.128)
L.Green spillover 0.0742 -0.00195 1.488 -0.126

(0.0834) (0.0749) (1.502) (0.867)
L.Fossil spillover -0.0590 -0.0150 -1.463 0.119

(0.0813) (0.0742) (1.503) (0.867)
L.R and D exp. 0.0763 0.123∗∗ -0.170 0.162

(0.0825) (0.0624) (0.309) (0.189)
Observations 8622 8622 7345 7345

Notes: All columns: Poisson control function estimations (first stage not shown). Robust standard
errors in parentheses. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation
period is 2009-2018. All regressions include year fixed effects and firm fixed effects using the BGVR
method. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 18 – Special investor types and green patenting, full table

(1) (2) (3) (4) (5)
L.Gov. share 0.0342

(0.0882)
L.PRI sig. share 0.0343

(0.0796)
L.Ins.& pens. fd. share -0.121

(0.298)
L.Domestic owner share -0.0210

(0.0505)
L.Big 3 share 0.0257

(0.0610)
L.Own stock green 1.431∗∗∗ 1.452∗∗∗ 1.445∗∗∗ 1.421∗∗∗ 1.444∗∗∗

(0.0720) (0.0851) (0.0908) (0.0769) (0.0775)
L.Own stock fossil 0.110∗∗ 0.113∗∗∗ 0.0909 0.0850 0.111∗∗

(0.0437) (0.0425) (0.0793) (0.0851) (0.0435)
L.Green spillover 0.0777 0.259 -0.270 -0.251 0.182

(0.0805) (0.416) (0.877) (0.807) (0.246)
L.Fossil spillover -0.0294 -0.235 0.320 0.322 -0.160

(0.0954) (0.434) (0.923) (0.902) (0.268)
L.R and D exp. 0.0997∗∗∗ 0.0712 0.161 0.176 0.0755

(0.0356) (0.0937) (0.119) (0.162) (0.0874)
Observations 8622 8622 8622 8622 8622

Notes: Dependent variable: Green patents. All columns: Poisson control function estimations (first
stage not shown). Robust standard errors in parentheses. Knowledge stocks, spillovers and R&D
expenditures are in logs. Estimation period is 2009-2018. All regressions include year fixed effects and
firm fixed effects using the BGVR method. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 19 – Special investor types and fossil patenting

(1) (2) (3) (4) (5)
L.Government share 0.0171

(0.0629)
L.PRI sig. share 0.0135

(0.0539)
L.Ins.& pens. fd. share -0.0858

(0.186)
L.Domestic owner share -0.0101

(0.0362)
L.Big 3 share 0.0120

(0.0412)
L.Own stock green -0.00700 0.00880 0.00566 -0.0218 0.00789

(0.0340) (0.0608) (0.0374) (0.0710) (0.0528)
L.Own stock fossil 1.289∗∗∗ 1.289∗∗∗ 1.249∗∗∗ 1.278∗∗∗ 1.289∗∗∗

(0.0742) (0.0700) (0.124) (0.0904) (0.0699)
L.Green spillover 0.00426 0.0720 -0.249 -0.156 0.0513

(0.0729) (0.280) (0.552) (0.582) (0.167)
L.Fossil spillover -0.00563 -0.0854 0.250 0.164 -0.0662

(0.0853) (0.293) (0.579) (0.646) (0.184)
L.R and D exp. 0.134∗∗∗ 0.123∗ 0.170∗∗ 0.170 0.122∗

(0.0296) (0.0699) (0.0721) (0.113) (0.0653)
Observations 8622 8622 8622 8622 8622

Notes: Dependent variable: Fossil patents. All columns: Poisson control function estimations (first
stage not shown). Robust standard errors in parentheses. Estimation period is 2009-2018. All regres-
sions include year fixed effects and firm fixed effects using the BGVR method. Significance levels are
indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A APPENDIX

Table 20 – Total Patents, full table

(1) (2) (3) (4) (5) (6)
Model Poisson

CF
Poisson
CF with
SE clust.

Poisson
CF add.
control

Poisson
CF

Poisson
CF

Neg. bin.
CF

Dep. var. Patents Patents Patents Family size Citations Patents
L.IO share 0.0114∗∗∗ 0.0114∗∗ 0.0110∗ 0.0129∗∗ -0.0258 0.00671∗∗

(0.00348) (0.00481) (0.00603) (0.00624) (0.0177) (0.00310)
L.Own patent stock 1.274∗∗∗ 1.274∗∗∗ 1.270∗∗∗ 1.483∗∗∗

(0.0374) (0.0313) (0.0370) (0.0340)
L.Own patent stock, FS 1.109∗∗∗

(0.0540)
L.Own patent stock, cit. 1.318∗∗∗

(0.0758)
L.Total spillover -0.0174∗ -0.0174 -0.0154 -0.0167

(0.00902) (0.0161) (0.0172) (0.0104)
L.Total spillover, FS -0.00957

(0.0224)
L.Total spillover, cit. 0.0989

(0.0633)
L.Tobin’s Q 0.0257

(0.0276)
L.R and D exp. 0.0132 0.0132 0.0179 0.0447 0.128∗∗ 0.0358

(0.0277) (0.0374) (0.0436) (0.0467) (0.0610) (0.0228)
Observations 8622 8622 8040 8622 8622 8622

Notes: Robust standard errors in parentheses. In the Poisson control function (CF) estimations starting
in column 2, standard errors are two-way clustered at the 4-digit NACE code and country level. In
the negative binomial control function estimation, standard errors are clustered at the 4-digit NACE
code level. Estimation period is 2009-2018. All regressions include year fixed effects, and firm fixed
effects using the BGVR method. First stage not shown. Significance levels are indicated as ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

49



A APPENDIX

Table 21 – Baseline results with climate exposure sample

(1) (2)
Green patents Fossil patents

L.IO share -0.00157 0.00760
(0.0272) (0.0236)

L.Own stock fossil 0.0609 1.335∗∗

(0.0567) (0.120)
L.Own stock green 1.496∗∗ 0.00494

(0.114) (0.134)
L.Green spillover -0.0467 0.0551

(0.293) (0.237)
L.Fossil spillover 0.0525 -0.0488

(0.363) (0.309)
L.R and D exp. 0.114∗∗ 0.133∗∗

(0.0399) (0.0469)
Observations 3972 3972

Notes: All columns: Poisson control function esti-
mation (first stage not shown). Robust standard er-
rors in parentheses, two-way clustered at the 4-digit
NACE code and country level. Estimation period is
2009-2018. All regressions include year fixed effects,
and firm fixed effects using the BGVR method.
Significance levels are indicated as ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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